![Hands-On Meta Learning with Python在线阅读](https://wfqqreader-1252317822.image.myqcloud.com/cover/8/36699008/b_36699008.jpg)
会员
Hands-On Meta Learning with Python
更新时间:2021-07-02 14:29:49 最新章节:Leave a review - let other readers know what you think
书籍简介
Metalearningisanexcitingresearchtrendinmachinelearning,whichenablesamodeltounderstandthelearningprocess.UnlikeotherMLparadigms,withmetalearningyoucanlearnfromsmalldatasetsfaster.Hands-OnMetaLearningwithPythonstartsbyexplainingthefundamentalsofmetalearningandhelpsyouunderstandtheconceptoflearningtolearn.Youwilldelveintovariousone-shotlearningalgorithms,likesiamese,prototypical,relationandmemory-augmentednetworksbyimplementingtheminTensorFlowandKeras.Asyoumakeyourwaythroughthebook,youwilldiveintostate-of-the-artmetalearningalgorithmssuchasMAML,Reptile,andCAML.YouwillthenexplorehowtolearnquicklywithMeta-SGDanddiscoverhowyoucanperformunsupervisedlearningusingmetalearningwithCACTUs.Intheconcludingchapters,youwillworkthroughrecenttrendsinmetalearningsuchasadversarialmetalearning,taskagnosticmetalearning,andmetaimitationlearning.Bytheendofthisbook,youwillbefamiliarwithstate-of-the-artmetalearningalgorithmsandabletoenablehuman-likecognitionforyourmachinelearningmodels.
品牌:中图公司
上架时间:2018-12-31 00:00:00
出版社:Packt Publishing
本书数字版权由中图公司提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
Sudharsan Ravichandiran
- 会员Ifyou'reamachinelearningdeveloperordeeplearningenthusiastinterestedinartificialintelligenceandwanttolearnaboutreinforcementlearningfromscratch,thisbookisforyou.Someknowled程序设计5.8万字
同类热门书
最新上架
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字
- 会员本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字
- 会员本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕“数据分析”与“运营增长”两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需计算机12万字
- 会员本书从需求规划、需求实现到可视化展示等,遵循项目开发的主要流程,全景介绍了电商行业Flink实时数据仓库的搭建过程。在整个项目的搭建过程中,介绍了主要组件的安装部署、需求实现的具体思路、问题的解决方案等,并穿插了大数据和数据仓库相关的理论知识,包括数据仓库的概念介绍、电商业务概述、数据仓库理论介绍和数据仓库建模等。最核心的内容是代码中对Flink的灵活应用,为读者展示了Flink处理数据的多种可能计算机13.1万字
- 会员《数据分析师手记:数据分析72个核心问题精解》从底层认知、思维方法、工具技术、项目落地及展望出发,使用问答的形式对数据分析中的72个核心知识点进行讲解,构建了数据分析的知识框架,带领读者认识数据分析背后的奥妙。读者可以用本书作为学习地图,针对具体的方法、技术进行延伸学习。计算机16.8万字
- 会员《SQLServer从入门到精通(第5版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了SQLServer开发所必需的各方面技术。全书分为4篇共19章,内容包括数据库基础、SQLServer数据库环境搭建、创建与管理数据库、操作数据表、SQL基础、SQL函数的使用、SQL数据查询基础、SQL数据高级查询、视图的使用、存储过程、触发器、游标的使用、索引与数据完整性、SQL中计算机14.1万字
- 会员本书旨在向广大有志于投身芯片设计行业的人士及正在从事芯片设计的工程师普及芯片设计知识和工作方法,使其更加了解芯片行业的分工与动向。本书共分9个章节,从多角度透视芯片设计,特别是数字芯片设计的流程、工具、设计方法、仿真方法等环节。凭借作者多年业内经验,针对IC新人关心的诸多问题,为其提供了提升个人能力,选择职业方向的具体指导。本书第1章是对IC设计行业的整体概述,并解答了IC新人普遍关心的若干问题。计算机29.9万字
- 会员本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例计算机10.4万字
同类书籍最近更新
- 会员本书第1~4章讲解企业大数据的战略规划,主要从宏观的角度介绍大数据的定位、组织保障、解决方案选择和自主实施思路,目的是从全局角度引导建立大数据工作的整体思维。第5~10章讲解企业大数据的落地实施,主要从执行层面介绍了大数据落地的相关技术、架构、开发、大数据工作流、应用和价值评估,直接以落地视角解读大数据工作中每个环节涉及的流程、知识和方法,这也是本书的核心章节。第11~13章讲解大数据的价值、变革数据库34.9万字
- 会员本书共9章,分为3篇。由来篇(第1~3章)首先分析了当前各企业在数据建设过程中会遇到的6大数据困局,然后重点介绍了为应对这些数据困局而逐渐发展出的标签类目体系这一数据资产构建方法论及其定位、定义,最后阐述了采用该方法建设数据资产的3点必要性:资产可复用、业务可理解、价值可衡量。理论篇(第4~6章)详细讲解了标签类目体系方法论的4个核心原理、从核心原理衍生出的3个构建前提和6个设计步骤,以及标签方数据库15.5万字
- 会员全书以Windows7和Office2010为平台,内容划分为走进计算机的世界、Windows7轻松玩转、速排工作文档、速算办公报表之Excel2010、速制演示文稿之PowerPoint2010、Office高级应用6个学习情境。本书对重点知识点和技能点都添加了微课,方便读者扫描二维码观看,轻松掌握相关知识。数据库18.3万字
- 会员近年来,以ApacheSpark为代表的大数据处理框架在学术界和工业界得到了广泛的使用。本书以ApacheSpark框架为核心,总结了大数据处理框架的基础知识、核心理论、典型的Spark应用,以及相关的性能和可靠性问题。本书分9章,主要包含四部分内容。第一部分大数据处理框架的基础知识(第1~2章):介绍大数据处理框架的基本概念、系统架构、编程模型、相关的研究工作,并以一个典型的Spark应用为数据库11.9万字